The human microbiota produces metabolites that can enter the bloodstream and exert systemic effects on various functions in both healthy and pathological states. We have studied the participation of microbiota-related metabolites in bacterial infection by examining their influence on the activity of cyclooxygenase (COX) as a key enzyme of inflammation. The influence of aromatic microbial metabolites, derivatives of phenylalanine (phenylpropionic acid, PPA), tyrosine (4-hydroxyphenyllactic acid, HPLA), and tryptophan (indolacetic acids, IAA), the concentrations of which in the blood change notably during sepsis, was evaluated. Also, the effect of itaconic acid (ITA) was studied, which is formed in macrophages under the action of bacterial lipopolysaccharides (LPS) and appears in the blood in the early stages of infection. Metabiotic acetyl phosphate (AcP) as a strong acetylating agent was also tested. The activity of COX was measured via the TMPD oxidation colorimetric assay using the commercial pure enzyme, cultured healthy monocytes, and the human acute monocytic leukemia cell line THP-1. All metabolites in the concentration range of 100-500 μM lowered the activity of COX. The most pronounced inhibition was observed on the commercial pure enzyme, reaching up to 40% in the presence of AcP and 20-30% in the presence of the other metabolites. On cell lysates, the effect of metabolites was preserved, although it significantly decreased, probably due to their interaction with other targets subject to redox-dependent and acetylation processes. The possible contribution of the redox-dependent action of microbial metabolites was confirmed by assessing the activity of the enzyme in the presence of thiol reagents and in model conditions, when the COX-formed peroxy intermediate was replaced with -butyl hydroperoxide (TBH). The data show the involvement of the microbial metabolites in the regulation of COX activity, probably due to their influence on the peroxidase activity of the enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671350 | PMC |
http://dx.doi.org/10.3390/ijms242216244 | DOI Listing |
Background: Trimethylamine N-oxide (TMAO), a metabolite dependent on intestinal microbiota, is closely related to the emergence, progression, and prognosis of cardiovascular disease (CVD), and has received increasing attention in recent years.
Objective: The current research hotspots and future development trends in TMAO and CVD field are found through bibliometrics analysis, which provides reference for further study.
Methods: The bibliometrics tools VOSviewer and CiteSpace were used to analyze the publications from the Web of Science Core Collection (WOSCC) database.
ACS Synth Biol
January 2025
The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Ectoine is an important natural secondary metabolite widely used in biomedical fields, novel cosmetics development, and the food industry. Due to the increasing market demand for ectoine, more cost-effective production methods are being explored. With the rapid development of synthetic biology and metabolic engineering technologies, the production of ectoine using traditional halophilic bacteria is gradually being replaced by higher-yielding and environmentally friendly nonhalophilic engineered strains.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.
Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.
View Article and Find Full Text PDFAdv Nutr
January 2025
Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA; School of Nutrition and Public Health, Oregon State University, Corvallis, Oregon, USA. Electronic address:
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are the diet and microbiota in the gastrointestinal tract (gut microbiota).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!