AI Article Synopsis

  • Ivermectin (IVM) is a medication important for treating parasites in humans and animals, but its effects on gut microbiota were not well-studied, especially not using healthy donors.
  • The research used a model to simulate the human gut and assess how IVM affects gut bacteria, finding that while IVM caused some minor and temporary changes to microbial communities, it did not harm healthy gut microbiota.
  • Additionally, the presence of soluble fiber in the diet might help protect gut bacteria from any potential negative impacts of IVM, and there was an indication of increased short-chain fatty acid production with IVM treatment.

Article Abstract

Ivermectin is a an anti-helminthic that is critical globally for both human and veterinary care. To the best of our knowledge, information available regarding the influence of ivermectin (IVM) on the gut microbiota has only been collected from diseased donors, who were treated with IVM alone or in combination with other medicines. Results thus obtained were influenced by multiple elements beyond IVM, such as disease, and other medical treatments. The research presented here investigated the impact of IVM on the gut microbial structure established in a Triple-SHIME (simulator of the human intestinal microbial ecosystem), using fecal material from three healthy adults. The microbial communities were grown using three different culture media: standard SHIME media and SHIME media with either soluble or insoluble fiber added (control, SF, ISF). IVM introduced minor and temporary changes to the gut microbial community in terms of composition and metabolite production, as revealed by 16S rRNA amplicon sequencing analysis, flow cytometry, and GC-MS. Thus, it was concluded that IVM is not expected to induce dysbiosis or yield adverse effects if administered to healthy adults. In addition, the donor's starting community influences the relationship between IVM and the gut microbiome, and the soluble fiber component in feed could protect the gut microbiota from IVM; an increase in short-chain fatty acid production was predicted by PICRUSt2 and detected with IVM treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671733PMC
http://dx.doi.org/10.3390/ijms242216125DOI Listing

Publication Analysis

Top Keywords

gut microbial
12
ivm gut
12
ivm
9
microbial ecosystem
8
gut microbiota
8
healthy adults
8
shime media
8
gut
6
microbial
5
impact ivermectin
4

Similar Publications

Changes in the gut microbiota are associated with obesity and may influence weight loss. We are currently implementing a sustained multidisciplinary collaborative weight management (MCWM) approach to weight loss. We report significant improvements in participant health status after 6 months, along with alterations in the structure, interactions, and metabolic functions of the microbiota.

View Article and Find Full Text PDF

Alcohol abuse can lead to significant cardiac injury, resulting in Alcoholic heart disease (AHD). The interplay between cardiac health and gut microbiota composition in the context of alcohol consumption is not well understood. Shen Song Yang Xin (SSYX) capsule and amiodarone are common drugs used to treat alcoholic heart disease, but little is known about their microbial regulatory mechanisms in alcoholic heart disease.

View Article and Find Full Text PDF

.

Expert Rev Gastroenterol Hepatol

January 2025

Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA.

Introduction: The gut microbiota has a complex relationship with the human host and is key to maintaining health. Disruption of the healthy diverse gut microbial milieu plays an important role in the pathogenesis of several diseases including infection (CDI), inflammatory bowel disease, irritable bowel syndrome, alcohol-related liver disease and metabolic-dysfunction associated steatotic liver disease (MASLD). Fecal microbiota transplantation (FMT) is highly effective in treating CDI, though its utility in other diseases is still being explored.

View Article and Find Full Text PDF

Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited.

View Article and Find Full Text PDF

Protein-based stable isotope probing (protein-SIP) can link microbial taxa to substrate assimilation. Traditionally, protein-SIP requires a sample-specific metagenome-derived database for samples with unknown composition. Here, we describe GroEL-prototyping-based stable isotope probing (GroEL-SIP), that uses GroEL as a taxonomic marker protein to identify bacterial taxa (GroEL-proteotyping) coupled to SIP directly linking identified taxa to substrate consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!