Allelic variation within genes controlling the vernalisation requirement () and photoperiod response () determines the adaptation of wheat to different environmental growing conditions as well as influences other traits related to grain yield. This study aimed to screen a Spanish spelt wheat collection using gene-specific molecular markers for , , , and loci and to phenotype for heading date (HD) in both field and greenhouse experiments under a long photoperiod and without vernalisation. Fifty-five spelt genotypes (91.7%) exhibited a spring growth habit, and all of them carried at least one dominant allele, whereas five (8.3%) genotypes had a winter growth habit, and they carried the triple recessive allele combination. The was the most frequent allele in the studied set of spelt accessions, and it was found in combination with both the dominant and/or alleles in 88.3% of the spelt accessions tested. All spelt accessions carried the photoperiod-sensitive allele, which may explain the late heading of spelt germplasm compared to the commercial spring bread wheat Setenil used as a control. The least significant difference test showed significant differences between allelic combinations, the earliest accessions being those carrying two or three dominant alleles, followed by the one-gene combinations. In addition, the genetic diversity was evaluated through capillary electrophoresis using 15 wheat simple sequence repeat (SSR) markers. Most markers had high levels of polymorphism, producing 95 different alleles which ranged between 53 and 279 bp in size. Based on the polymorphic information content values obtained (from 0.51 to 0.97), 12 out of the 15 SSRs were catalogued as informative markers (values > 0.5). According to the dendrogram generated, the spelt accessions clustered as a separate group from the commercial bread wheat Setenil. Knowledge of and alleles, heading time, and genetic variability using SSR markers is valuable for spelt wheat breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671769 | PMC |
http://dx.doi.org/10.3390/ijms242216041 | DOI Listing |
Int J Mol Sci
January 2025
College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China.
Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.
Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.
View Article and Find Full Text PDFMol Breed
January 2025
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China.
Unlabelled: Pre-harvest sprouting (PHS) of wheat ( L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Agronomy, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.
View Article and Find Full Text PDFBMC Genomics
January 2025
Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!