High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass () is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the 'ECM-receptor interaction' pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the 'ECM-receptor interaction' pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671503PMC
http://dx.doi.org/10.3390/genes14112096DOI Listing

Publication Analysis

Top Keywords

largemouth bass
24
comparative transcriptomic
8
transcriptomic analysis
8
high temperatures
8
livers largemouth
8
'ecm-receptor interaction'
8
interaction' pathway
8
hub genes
8
response largemouth
8
largemouth
6

Similar Publications

This study was to evaluate the effects of dietary adding of phytosterol (PS) on growth, antioxidant capacity, tissue morphology and gut microbiota of largemouth bass (Micropterus salmoides). A total of 540 largemouth bass (13.75 ± 0.

View Article and Find Full Text PDF

The role of largemouth bass NF-κB/p65: Inhibition of LMBV and activator of IL-18 promoter.

Fish Shellfish Immunol

January 2025

College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China. Electronic address:

Nuclear factor-κB (NF-κB)/p65, a vital signaling molecule in the NF-κB pathway, participates in diverse physiological functions and host-virus interactions. However, the involvement of NF-κB/p65 in fish virus infection remains poorly understood. In this study, we explored the role of the p65 in virus infection and its impact on IL-18 regulation in largemouth bass (Micropterus salmoides).

View Article and Find Full Text PDF

Nutritional value improvement of soybean meal through solid-state fermentation by proteases-enhanced Streptomyces sp. SCUT-3.

Int J Biol Macromol

January 2025

School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China. Electronic address:

With the global population expected to reach 10 billion by the 2050s, the demand for protein will surge, intensifying the need for high protein utilization efficiency. This study investigates the use of protease-enhanced Streptomyces sp. SCUT-3-3940 to degrade soybean meal (SBM) via solid-state fermentation (SSF).

View Article and Find Full Text PDF

AKT-FoxO1-PCK/ChREBP signaling pathway regulates metabolic liver disease induced by high glucose in largemouth bass.

Int J Biol Macromol

January 2025

National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).

View Article and Find Full Text PDF

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!