The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans.

Genes (Basel)

Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic.

Published: November 2023

Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (, , and ) and three house mouse subspecies (, , ), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from , which is supposed to be the strongest commensal, were not significantly different from the non-commensal species. Regardless of an overall tendency for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain level. Our study thus suggests that expansion of the cluster, which appeared before the house mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against generalisations of results based on a few strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671799PMC
http://dx.doi.org/10.3390/genes14112090DOI Listing

Publication Analysis

Top Keywords

house mouse
16
major urinary
8
urinary protein
8
facilitate commensalism
8
commensalism humans
8
three house
8
mouse subspecies
8
mouse
5
expansion house
4
mouse major
4

Similar Publications

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease often treated with glucocorticoids, which can lead to complications such as osteoporosis and an increased infection risk. Hence, identifying safe and effective treatment strategies is crucial. has shown promise in improving immune disorders.

View Article and Find Full Text PDF

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

Background: Smooth muscle cells (SMCs) of the proximal thoracic aorta are derived from second heart field (SHF) and cardiac neural crest lineages. Recent studies, both in vitro and in vivo, have implied relevance of lineage-specific SMC functions in the pathophysiology of thoracic aortic diseases; however, whether 2 lineage-derived SMCs have any predisposed transcriptional differences in the control aorta remains unexplored.

Methods: Single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing were performed on isolated cells from the aortic root and ascending aortas of 14-week-old SHF-traced () and cardiac neural crest-traced () male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!