Musicians outperform non-musicians in vocal emotion recognition, but the underlying mechanisms are still debated. Behavioral measures highlight the importance of auditory sensitivity towards emotional voice cues. However, it remains unclear whether and how this group difference is reflected at the brain level. Here, we compared event-related potentials (ERPs) to acoustically manipulated voices between musicians ( = 39) and non-musicians ( = 39). We used parameter-specific voice morphing to create and present vocal stimuli that conveyed happiness, fear, pleasure, or sadness, either in all acoustic cues or selectively in either pitch contour (F0) or timbre. Although the fronto-central P200 (150-250 ms) and N400 (300-500 ms) components were modulated by pitch and timbre, differences between musicians and non-musicians appeared only for a centro-parietal late positive potential (500-1000 ms). Thus, this study does not support an early auditory specialization in musicians but suggests instead that musicality affects the manner in which listeners use acoustic voice cues during later, controlled aspects of emotion evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670383 | PMC |
http://dx.doi.org/10.3390/brainsci13111563 | DOI Listing |
Behav Sci (Basel)
December 2024
Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, Ministry of Education, & Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China.
Pitch is a fundamental element in music. While most previous studies on musical pitch have focused on musicians, our understanding of musical pitch perception in non-musicians is still limited. This study aimed to explore how Mandarin-speaking listeners who did not receive musical training perceive and categorize musical pitch.
View Article and Find Full Text PDFJASA Express Lett
January 2025
STMS, IRCAM, Sorbonne Université, CNRS, Ministère de la Culture, 75004 Paris,
This study addresses how salience shapes the perceptual organization of an auditory scene. A psychophysical task that was introduced previously by Susini, Jiaouan, Brunet, Houix, and Ponsot [(2020). Sci.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.
View Article and Find Full Text PDFBrain Sci
November 2024
Department of Pedagogy, Music Institute, Faculty of Philosophy and Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile.
Background/objectives: Previous research has suggested that Western musicians, who generally demonstrate proficiency in reading musical scores, exhibit superior performance in visuospatial working memory tasks compared to non-musicians. Evidence indicates brain activation in regions such as the left inferior parietal lobe and the right posterior fusiform gyrus during music reading, which are associated with visuospatial processing. This study aimed to explore how musical training influences spatial working memory and to examine the relationship between self-assessment accuracy and cognitive performance.
View Article and Find Full Text PDFPsychol Res
November 2024
Department of Psychology, The Per Sternberg Electroencephalogram-Event Related Potentials (EEG-ERP) Laboratory for the Study of Brain and Behavior, Tel-Hai College, 12208, Upper Galilee, Israel.
Extensive research highlights the multifaceted benefits of active musical engagement across all ages, from childhood to the elderly. The practice of a musical instrument activates numerous brain regions, enhancing a range of neurocognitive skills. Despite accumulating evidence from various clinical populations, research on the effects of musical training in individuals with ADHD is scarce, with virtually no studies focusing on adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!