In various applications, such as disease diagnosis, surgical navigation, human brain atlas analysis, and other neuroimage processing scenarios, brain extraction is typically regarded as the initial stage in MRI image processing. Whole-brain semantic segmentation algorithms, such as U-Net, have demonstrated the ability to achieve relatively satisfactory results even with a limited number of training samples. In order to enhance the precision of brain semantic segmentation, various frameworks have been developed, including 3D U-Net, slice U-Net, and auto-context U-Net. However, the processing methods employed in these models are relatively complex when applied to 3D data models. In this article, we aim to reduce the complexity of the model while maintaining appropriate performance. As an initial step to enhance segmentation accuracy, the preprocessing extraction of full-scale information from magnetic resonance images is performed with a cluster tool. Subsequently, three multi-input hybrid U-Net model frameworks are tested and compared. Finally, we propose utilizing a fusion of two-dimensional segmentation outcomes from different planes to attain improved results. The performance of the proposed framework was tested using publicly accessible benchmark datasets, namely LPBA40, in which we obtained Dice overlap coefficients of 98.05%. Improvement was achieved via our algorithm against several previous studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669566 | PMC |
http://dx.doi.org/10.3390/brainsci13111549 | DOI Listing |
Front Med (Lausanne)
December 2024
Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
Objectives: To implement state-of-the-art deep learning architectures such as Deep-Residual-U-Net and DeepLabV3+ for precise segmentation of hippocampus and ventricles, in functional magnetic resonance imaging (fMRI). Integrate VGG-16 with Random Forest (VGG-16-RF) and VGG-16 with Support Vector Machine (VGG-16-SVM) to enhance the binary classification accuracy of Alzheimer's disease, comparing their performance against traditional classifiers.
Method: OpenNeuro and Harvard's Data verse provides Alzheimer's coronal functional MRI data.
Rev Sci Instrum
December 2024
School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, People's Republic of China.
Road crack detection approaches based on the image processing technique have attracted much attention during the past decade due to their convenience and efficiency, but most of them cannot achieve the expected performances due to the complex background interference and severe category imbalance of road images. This paper presents a hierarchical existential prior based on an expanded pseudo-label for crack detection. In particular, the framework contains three variants of U-Net, and each sub-network is trained by pseudo-labels generated by transforming semantic categories of non-crack pixels distributed in the neighborhoods of crack ones.
View Article and Find Full Text PDFSci Rep
December 2024
Research Center, Future University in Egypt, New Cairo, 11835, Egypt.
Image processing and pattern recognition methods have recently been extensively implemented in histopathological images (HIs). These computer-aided techniques are aimed at detecting the attentive biological markers for assisting the final cancer grading. Mitotic count (MC) is a significant cancer detection and grading parameter.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Tiktok Inc., San Jose, CA, USA.
Background: Medical image segmentation is crucial for clinical diagnostics and treatment planning. Recently, hybrid models often neglect the local modeling capabilities of Transformers for medical image segmentation, despite the complementary nature of local information from both convolutional neural networks (CNNs) and transformers. This limitation is particularly problematic in multi-organ segmentation, where organs are closely adhered, and accurate delineation is essential.
View Article and Find Full Text PDFArXiv
November 2024
Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston 02114.
Purpose: Deformable image registration (DIR) plays a critical role in adaptive radiation therapy (ART) to accommodate anatomical changes. However, conventional intensity-based DIR methods face challenges when registering images with unequal image intensities. In these cases, DIR accuracy can be improved using a hybrid image similarity metric which matches both image intensities and the location of known structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!