This study investigated the automatic segmentation and classification of mitral regurgitation (MR) and tricuspid regurgitation (TR) using a deep learning-based method, aiming to improve the efficiency and accuracy of diagnosis of valvular regurgitations. A VABC-UNet model was proposed consisting of VGG16 encoder, U-Net decoder, batch normalization, attention block and deepened convolution layer based on the U-Net backbone. Then, a VABC-UNet-based assessment framework was established for automatic segmentation, classification, and evaluation of valvular regurgitations. A total of 315 color Doppler echocardiography images of MR and/or TR in an apical four-chamber view were collected, including 35 images in the test dataset and 280 images in the training dataset. In comparison with the classic U-Net and VGG16-UNet models, the segmentation performance of the VABC-UNet model was evaluated via four metrics: Dice, Jaccard, Precision, and Recall. According to the features of regurgitation jet and atrium, the regurgitation could automatically be classified into MR or TR, and evaluated to mild, moderate, moderate-severe, or severe grade by the framework. The results show that the VABC-UNet model has a superior performance in the segmentation of valvular regurgitation jets and atria to the other two models and consequently a higher accuracy of classification and evaluation. There were fewer pseudo- and over-segmentations by the VABC-UNet model and the values of the metrics significantly improved ( < 0.05). The proposed VABC-UNet-based framework achieves automatic segmentation, classification, and evaluation of MR and TR, having potential to assist radiologists in clinical decision making of the regurgitations in valvular heart diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669048 | PMC |
http://dx.doi.org/10.3390/bioengineering10111319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!