The aim of the study was to compare the properties of inulin hydrogels obtained with different methods, e.g., the traditional-thermal method and new, non-thermal methods, used in food production, like ultrasonic, high-pressure homogenization (HPH), and high hydrostatic pressures (HHPs). It was found that each of the compared induction methods allowed for obtaining inulin hydrogels. However, the use of non-thermal induction methods allows for obtaining a gel structure faster than in the case of thermal induction. In addition, hydrogels obtained with new, non-thermal methods differ from gels obtained with thermal treatment. They were characterized by higher stability (from 1.7 percent point-of-stability parameters for HHP 150 MPa to 18.8 for HPH II cycles) and in most cases, by improved microrheological properties-lower solid-liquid balance toward the solid phase, increased elasticity and viscosity indexes, and lowering the flow index. The gels obtained with the new, non-thermal method were also characterized by a more delicate structure, including lower firmness (the differences between thermal and non-thermal inductions were from 0.73 N for HHP at 500 MPa to 2.39 N for HHP at 150 MPa) and spreadability (the differences between thermal and non-thermal inductions were from 7.60 Ns for HHP at 500 MPa to 15.08 Ns for HHP at 150 MPa). The color of ultrasound-induced inulin gels, regarding the HPH and HHP technique, was darker (the differences in the L* parameter between thermal and non-thermal inductions were from 1.92 for HHP at 500 MPa to 4.37 for 10 min ultrasounds) and with a lower a* color parameter (the differences in the a* parameter between thermal and non-thermal inductions were from 0.16 for HHP at 500 MPa to 0.39 for HPH II cycles) and b* color parameter (the differences in the b* parameter between thermal and non-thermal inductions were from 1.69 for 5 min ultrasounds to 2.68 for HPH II cycles). It was also found that among the compared induction methods, the high-pressure technique has the greatest potential for modifying the properties of the created inulin hydrogels. Thanks to its application, depending on the amount of applied pressure, it was possible to obtain gels with very different characteristics, both delicate (i.e., soft and spreadable), using HHP at 150 MPa, and hard, using HHP at 500 MPa, the closest in characteristics to gels induced with the thermal method. This may allow the properties of hydrogels to be matched to the characteristics of the food matrix being created.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670224 | PMC |
http://dx.doi.org/10.3390/foods12224154 | DOI Listing |
BMC Oral Health
January 2025
Associate Professor of Operative Dentistry, Conservative Dentistry Department, Faculty of Oral and Dental Medicine Badr University in Cairo, Cairo, Egypt.
Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
The escalating challenges posed by water resource contamination, especially exacerbated by health concerns associated with microbial fungi threats, necessitate advanced disinfection technologies. Within this context, non-thermal plasma generated within bubble column reactors emerges as a promising antifungal strategy. The effects of direct plasma bubbles within different discharge modes and thus-produced plasma activated water (PAW) on the inactivation of Saccharomyces cerevisiae are investigated.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
January 2025
Neuro Vascular Interventional Radiology Program, Department of Radiology, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, 10065, USA.
In most of the cases Interventional Radiology techniques and therapies are proposed for the management of symptomatic soft tissue benign tumors responsible for pain and/or compression symptoms aiming to offer a curative intent by means of tumor necrosis with subsequent symptoms' management and improvement of life quality. The ablative therapies include chemical, thermal and non-thermal approaches while, trans-arterial (chemo)embolization also has a distinct role. Adjunct ancillary techniques should be performed whenever necessary to increase efficacy and safety and avoid or reduce complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!