Pancreatic ductal adenocarcinoma (PDAC) is associated with enhanced aerobic glycolysis through elevated glucose uptake and the upregulated expression of genes encoding rate-limiting glycolytic enzymes. However, the direct impact of altered glycolytic pathways on pancreatic tumor progression has not been thoroughly investigated. Here, we utilized two strains of BAC transgenic mice with pancreatic expression of two distinct sets of glycolytic genes each arranged in a polycistronic fashion ( and , respectively) to investigate the role of altered glycolysis on the development of pancreatic ductal tumor development in the mice. The overexpression of the two sets of glycolytic genes exhibited no significant effects on tumor development in the 4-5-month-old mice (the PanIN2 lesions stage). In the 9-10-month-old mice, the overexpression of PFKFB3-HK2-GLUT1 significantly accelerated PanIN3 progression, exhibiting elevated levels of ductal cell marker CK19 and tumor fibrosis. Surprisingly, the overexpression of LDHA-PDK1 significantly attenuated the progression of PanIN3 in the 9-10-month-old mice with significantly downregulated levels of CK19 and fibrosis. Therefore, distinct set of glycolytic enzymes that are involved in different glycolytic routes exhibited contrasting effects on pancreatic ductal tumor development depending on the tumor stages, providing novel insights into the complexity of the glycolytic pathway in the perspective of PDAC development and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669313 | PMC |
http://dx.doi.org/10.3390/biomedicines11112962 | DOI Listing |
Surgery
January 2025
Department of Surgery, School of Medicine and Health, Technical University Munich, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany; Institute of Pathology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
Background: In pancreatic ductal adenocarcinoma, neural invasion is being increasingly recognized as an unfavorable predictor of patient outcomes. Neural invasion severity seems to have a stronger clinical impact on patient prognosis than neural invasion status alone. Therefore, this study aims to assess the impact of severity of neural invasion on overall survival and disease-free survival in pancreatic ductal adenocarcinoma.
View Article and Find Full Text PDFSurgery
January 2025
Department of Surgery, The NYU Grossman School of Medicine and NYU Langone Health, New York, NY. Electronic address:
Background: To improve outcomes for patients with pancreatic ductal adenocarcinoma, a complete resection is crucial. However, evidence regarding the impact of microscopically positive surgical margins (R1) on recurrence is conflicting due to varying definitions and limited populations of patients with borderline-resectable and locally advanced pancreatic cancer. Therefore, we aimed to determine the impact of the resection margin status on recurrence and survival in patients with pancreatic ductal adenocarcinoma stratified by local tumor stage.
View Article and Find Full Text PDFNutrients
December 2024
Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) "Demokritos", 153 41 Aghia Paraskevi, Greece.
: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!