Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter () , while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter were decreased. This was supported by proteomic analysis, where expression of proteins involved in glucose uptake, glycolytic pathways, and the TCA cycle were enhanced, and expression of several proteins involved in fatty acid metabolism were reduced. Similar effects on energy metabolism were observed in human bone marrow stromal cells differentiated to osteoblastic cells incubated with conditioned medium from myotubes (SKM-CM), with increased glucose uptake and reduced oleic acid uptake. Proteomic analyses of the two conditioned media revealed many common proteins. Thus, our data may indicate a shift in fuel preference from fatty acid to glucose metabolism in both cell types, induced by conditioned media from the opposite cell type, possibly indicating a more general pattern in communication between these tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669731 | PMC |
http://dx.doi.org/10.3390/biomedicines11112908 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!