Evolution of Microbial Flora Colonizing Burn Wounds during Hospitalization in Uruguay.

Biomedicines

Centro Nacional de Quemados, Hospital de Clínicas, Piso 13, Avenida Italia s/n, Montevideo 11600, Uruguay.

Published: October 2023

(1) Background: Infections are a main cause of morbidity and mortality among burn patients. The spectrum of microorganisms depends on the epidemiological context and treatment practices. We aimed to describe the evolution of microbial flora colonizing burn wounds among patients hospitalized during 15 or more days at the National Burn Center in 2015. (2) Methods: Demographic data, length of stay, total body surface area burn, and status at discharge were collected from electronic records and culture results from the laboratory database. (3) Results: Among 98 included patients, 87 were colonized. The mean length of stay was 39 days overall and 16 days in the ICU. spp., spp., and predominated. Fifty-six patients harbored multidrug-resistant bacteria and had a significantly greater TBSA. The mean time to colonization was 6 days overall and 14 days for multidrug-resistant bacteria; it was significantly longer for methicillin-resistant than for methicillin-susceptible . (4) Conclusions: This is the first report describing the dynamics of microbial colonization of burn wounds in Uruguay. Similarities were found with reports elsewhere, but early colonization with yeasts and the absence of were unique. Each burn center needs to monitor its microbial ecology to tailor their antimicrobial strategies effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669172PMC
http://dx.doi.org/10.3390/biomedicines11112900DOI Listing

Publication Analysis

Top Keywords

burn wounds
12
evolution microbial
8
microbial flora
8
flora colonizing
8
colonizing burn
8
burn center
8
length stay
8
days days
8
multidrug-resistant bacteria
8
burn
7

Similar Publications

Outcomes of electrical injuries in the emergency department: epidemiology, severity predictors, and chronic sequelae.

Eur J Trauma Emerg Surg

January 2025

Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.

Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.

View Article and Find Full Text PDF

[Not Available].

Surg Technol Int

January 2025

Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York.

Thermal or burn injuries cause coagulative necrosis of the epidermis and underlying tissues and the resultant wounds can be long lasting and highly painful. Depending on the depth of a burn, management ranges from local wound care to surgical intervention. When presented with deep-partial thickness and full-thickness burns, autologous skin grafting has been the mainstay of management to prevent scarring and promote healing.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

BSP promotes skin wound healing by regulating the expression level of SCEL.

Cytotechnology

April 2025

Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.

Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.

View Article and Find Full Text PDF

Trauma and burn injuries often present with multiple complications, necessitating a coordinated, multidisciplinary approach to management. This case series reviews the outcomes and challenges of treating high-risk trauma and burn patients, with a focus on complex polytrauma, alcohol withdrawal, high-voltage electrical injuries, and lightning strikes. Each case underscores the importance of early intervention, multidisciplinary team involvement, and individualized treatment protocols for improving patient outcomes in critically injured burn victims.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!