The Cav3.2 T-type calcium channel is implicated in various pathological conditions, including cardiac hypertrophy, epilepsy, autism, and chronic pain. Phosphorylation of Cav3.2 by multiple kinases plays a pivotal role in regulating its calcium channel function. The calcium/calmodulin-dependent serine/threonine phosphatase, calcineurin, interacts physically with Cav3.2 and modulates its activity. However, it remains unclear whether calcineurin dephosphorylates Cav3.2, the specific spatial regions on Cav3.2 involved, and the extent of the quantitative impact. In this study, we elucidated the serine/threonine residues on Cav3.2 targeted by calcineurin using quantitative mass spectrometry. We identified six serine residues in the N-terminus, II-III loop, and C-terminus of Cav3.2 that were dephosphorylated by calcineurin. Notably, a higher level of dephosphorylation was observed in the Cav3.2 C-terminus, where calcineurin binds to this channel. Additionally, a previously known CaMKII-phosphorylated site, S1198, was found to be dephosphorylated by calcineurin. Furthermore, we also discovered that a novel CaMKII-phosphorylated site, S2137, underwent dephosphorylation by calcineurin. In CAD cells, a mouse central nervous system cell line, membrane depolarization led to an increase in the phosphorylation of endogenous Cav3.2 at S2137. Mutation of S2137 affected the calcium channel function of Cav3.2. Our findings advance the understanding of Cav3.2 regulation not only through kinase phosphorylation but also via calcineurin phosphatase dephosphorylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669385 | PMC |
http://dx.doi.org/10.3390/biomedicines11112891 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.
View Article and Find Full Text PDFeNeurologicalSci
March 2025
Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.
L-type calcium channel antagonists are uncommon causes of myoclonus, and the underlying mechanism remains unclear. Here, we report a case of parkinsonian syndrome with deterioration of preexisting myoclonus after nifedipine use. A 96-year-old woman was administered a single dose of sustained-release nifedipine for chest pain.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFNat Commun
January 2025
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!