Aripiprazole has fewer metabolic side effects than other antipsychotics; however, there are some severe ones in the liver, leading to drug-induced liver injury. Repeated treatment with aripiprazole affects cell division. Since this process requires a lot of energy, we decided to investigate the impact of aripiprazole on rat liver cells and mitochondria as the main source of cellular energy production by measuring the mitochondrial membrane potential, respiration, adenosine triphosphate (ATP) production, oxidative stress, antioxidative response, and human blood haemolysis. Here, we report that mitochondrial hyperpolarisation from aripiprazole treatment is accompanied by higher reactive oxygen species (ROS) production and increased antioxidative response. Lower mitochondrial and increased glycolytic ATP synthesis demand more glucose through glycolysis for equal ATP production and may change the partition between the glycolysis and pentose phosphate pathway in the liver. The uniform low amounts of the haemolysis of erythrocytes in the presence of aripiprazole in 25 individuals indicate lower quantities of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH+H), which is in accordance with a decreased activity of glucose 6-phosphate dehydrogenase and the lower dehydrogenase activity upon aripiprazole treatment. The lower activity of glucose 6-phosphate dehydrogenase supports a shift to glycolysis, thus rescuing the decreased mitochondrial ATP synthesis. The putative reduction in NADPH+H did not seem to affect the oxidised-to-reduced glutathione ratio, as it remained equal to that in the untreated cells. The effect of aripiprazole on glutathione reduction is likely through direct binding, thus reducing its total amount. As a consequence, the low haemolysis of human erythrocytes was observed. Aripiprazole causes moderate perturbations in metabolism, possibly with one defect rescuing the other. The result of the increased antioxidant enzyme activity upon treatment with aripiprazole is increased resilience to oxidative stress, which makes it an effective drug for schizophrenia in which oxidative stress is constantly present because of disease and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669280PMC
http://dx.doi.org/10.3390/antiox12111930DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
aripiprazole
10
mitochondrial hyperpolarisation
8
liver cells
8
treatment aripiprazole
8
atp production
8
antioxidative response
8
aripiprazole treatment
8
atp synthesis
8
activity glucose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!