Despite the widespread agricultural use of dithianon as an antifungal agent, its neurotoxic implications for humans and wildlife have not been comprehensively explored. Using zebrafish embryonic development as our model, we found that dithianon treatment induced behavioral alterations in zebrafish larvae that appeared normal. Detailed quantitative analyses showed that dithianon at ≥0.0001 µgmL induced cytoplasmic and mitochondrial antioxidant responses sequentially, followed by the disruption of mitochondrial and cellular homeostasis. Additionally, dithianon at 0.01 and 0.1 µgmL downregulated the expressions of glutamatergic (), GABAergic (), and dopaminergic () neuronal markers. Contrarily, dithianon upregulated the expression of the oligodendrocyte marker () at concentrations of 0.001 and 0.01 µgmL, concurrently suppressing the gene expression of the glucose transporter /. Particularly, dithianon-induced increase in reactive oxygen species (ROS) production was reduced by both -acetylcysteine (NAC) and betaine; however, only NAC prevented dithianon-induced mortality of zebrafish embryos. Moreover, NAC specifically prevented dithianon-induced alterations in glutamatergic and dopaminergic neurons while leaving GABAergic neurons unaffected, demonstrating that the major neurotransmission systems in the central nervous system differentially respond to the protective effects. Our findings contribute to a better understanding of the neurotoxic potential of dithianon and to developing preventive strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668936PMC
http://dx.doi.org/10.3390/antiox12111920DOI Listing

Publication Analysis

Top Keywords

glutamatergic dopaminergic
8
gabaergic neurons
8
001 µgml
8
nac prevented
8
prevented dithianon-induced
8
dithianon
7
differential neuroprotective
4
neuroprotective effects
4
effects -acetylcysteine
4
-acetylcysteine dithianon
4

Similar Publications

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.

View Article and Find Full Text PDF

Background/objectives: Internalizing disorders, including depression and anxiety, are major contributors to the global burden of disease. While the genetic architecture of these disorders in adults has been extensively studied, their early-life genetic mechanisms remain underexplored, especially in non-European populations. This study investigated the genetic mechanisms underlying internalizing symptoms in a cohort of Latin American children.

View Article and Find Full Text PDF

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Addiction comes in various forms and can be related to substances like cocaine, opioids, alcohol, cannabis, amphetamine, and nicotine, as well as behaviors like gambling or sex addiction. The impact of addiction places increased economic and medical burdens on society. Currently, the management of addiction is more focused on symptomatic relief rather than targeting the reinforcing mechanisms of dependence on addictive substances and behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!