A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards Realistic 3D Models of Tumor Vascular Networks. | LitMetric

Towards Realistic 3D Models of Tumor Vascular Networks.

Cancers (Basel)

Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.

Published: November 2023

For reliable in silico or in vitro investigations in, for example, biosensing and drug delivery applications, accurate models of tumor vascular networks down to the capillary size are essential. Compared to images acquired with conventional medical imaging techniques, digitalized histological tumor slices have a higher resolution, enabling the delineation of capillaries. Volume rendering procedures can then be used to generate a 3D model. However, the preparation of such slices leads to misalignments in relative slice orientation between consecutive slices. Thus, image registration algorithms are necessary to re-align the slices. Here, we present an algorithm for the registration and reconstruction of a vascular network from histologic slices applied to 169 tumor slices. The registration includes two steps. First, consecutive images are incrementally pre-aligned using feature- and area-based transformations. Second, using the previous transformations, parallel registration for all images is enabled. Combining intensity- and color-based thresholds along with heuristic analysis, vascular structures are segmented. A 3D interpolation technique is used for volume rendering. This results in a 3D vascular network with approximately 400-450 vessels with diameters down to 25-30 µm. A delineation of vessel structures with close distance was limited in areas of high structural density. Improvement can be achieved by using images with higher resolution and or machine learning techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670125PMC
http://dx.doi.org/10.3390/cancers15225352DOI Listing

Publication Analysis

Top Keywords

models tumor
8
tumor vascular
8
vascular networks
8
tumor slices
8
higher resolution
8
volume rendering
8
vascular network
8
slices
6
vascular
5
realistic models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!