The outbreak of the monkeypox virus (MPXV) worldwide in 2022 highlights the need for a rapid and low-cost MPXV detection tool for effectively monitoring and controlling monkeypox disease. In this study, we developed a flexible lateral flow immunoassay (LFIA) with strong colorimetric and enhanced fluorescence dual-signal output for the rapid, on-site, and highly sensitive detection of the MPXV antigen in different scenarios. A multilayered SiO-Au core dual-quantum dot (QD) shell nanocomposite (named SiO-Au/DQD), which consists of a large SiO core (~ 200 nm), one layer of density-controlled gold nanoparticles (AuNPs, 20 nm), and thousands of small QDs, was fabricated instead of a traditional colorimetric nanotag (i.e., AuNPs) and a fluorescent nanotag (QD nanobead) to simultaneously provide good stability, strong colorimetric ability and superior fluorescence intensity. With the dual-signal output LFIA, we achieved the specific screening of the MPXV antigen (A29L) in 15 min, with detection limits of 0.5 and 0.0021 ng/mL for the colorimetric and fluorometric modes, respectively. Moreover, the colorimetric mode of SiO-Au/DQD-LFIA exhibits the same sensitivity as the traditional AuNP- LFIA, whereas the overall sensitivity of this method on the basis of the fluorescent signal can achieve 238- and 3.3-fold improvements in sensitivity for MPXV compared with the AuNP-based LFIA and ELISA methods, respectively, indicating the powerful performance and good versatility of the dual-signal method in the point-of-care testing of the MPXV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675944 | PMC |
http://dx.doi.org/10.1186/s12951-023-02215-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!