In the adult mouse brain, perineuronal net (PNN), a highly structured extracellular matrix, surrounds subsets of neurons. The AZGP1 gene encodes zinc-2-glycoprotein (ZAG) is a lipid-mobilizing factor. However, its expression and distribution in the adult brain have been controversial. Here, for the first time, we demonstrate that the secreted ZAG is localized to Wisteria floribunda agglutinin (WFA)-positive PNNs around parvalbumin (PV)-expressing interneurons in the hippocampus, cortex, and a number of other PNN-bearing neurons and co-localizes with aggrecan, one of the components of PNNs. Few ZAG-positive nets were seen in the area without WFA staining by chondroitinase ABC (ChABC) which degrades glycosaminoglycans (GAGs) from the chondroitin sulfate proteoglycans (CSPGs) in the PNN. Reanalysis of single-cell sequencing data revealed that ZAG mRNA was mainly expressed in oligodendrocyte lineages, specifically in olfactory sheathing cells. The ZAG receptor β3 adrenergic receptor (β3AR) is also selectively co-localized with PV interneurons and CA2 pyramidal neurons in the hippocampus. In addition, molecular docking provides valuable new insights on how GAGs interfere with ZAG and ZAG/β3AR complex. Finally, our results indicated that human recombinant ZAG could significantly inhibit serum derivation-induced cell apoptosis in HT22 cells. Our combined experimental and theoretical approach raises a unique hypothesis namely that ZAG may be a crucial functional attribute of PNNs in the brain to protect neuronal cell from apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-023-03771-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!