Nanowire implosion under laser amplified spontaneous emission pedestal irradiation.

Sci Rep

Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R &D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125, Bucharest-Măgurele, Romania.

Published: November 2023

Nanowire array targets exhibit high optical absorption when interacting with short, intense laser pulses. This leads to an increased yield in the production of accelerated particles for a variety of applications. However, these interactions are sensitive to the laser prepulse and could be significantly affected. Here, we show that an array of aligned nanowires is imploded when irradiated by an Amplified Spontaneous Emission pedestal of a [Formula: see text] laser with an intensity on the order of [Formula: see text]. Using radiation hydrodynamics simulations, we demonstrate that the electron density profile is radially compressed at the tip by the rocket-like propulsion of the ablated plasma. The mass density compression increases up to [Formula: see text] when a more dense nanowire array is used. This is due to the ablation pressure from the neighboring nanowires. These findings offer valuable information for selecting an appropriate target design for experiments aimed at enhancing production of accelerated particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673875PMC
http://dx.doi.org/10.1038/s41598-023-48090-9DOI Listing

Publication Analysis

Top Keywords

[formula text]
12
amplified spontaneous
8
spontaneous emission
8
emission pedestal
8
nanowire array
8
production accelerated
8
accelerated particles
8
nanowire implosion
4
laser
4
implosion laser
4

Similar Publications

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.

View Article and Find Full Text PDF

Ultra-large nonlinear parameters and all-optical modulation of a transition metal dichalcogenides on silicon waveguide.

Sci Rep

January 2025

MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.

We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.

View Article and Find Full Text PDF

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

Agriculture is a major contributor to global greenhouse gas emissions, highlighting the urgent need for effective carbon reduction strategies. This study presents an innovative integrated model that employs Fermatean Neutrosophic Set in conjunction with the Weighted Influence Nonlinear Gauge System and the Analytic Hierarchy Process combined with the Entropy Weight Method to assess key factors influencing agricultural carbon reduction. Our study delineates the hierarchical importance of factors influencing carbon emissions, with carbon emission reduction policy (τ4) emerging as the paramount factor, attributed a value of 0.

View Article and Find Full Text PDF

Land resources are vital for urban development and construction. Abandoned industrial areas often contain large amounts of heavy metals from past industrial activities. Accurate knowledge of soil pollutant content and spatial distribution is crucial to avoid health risks and achieve sustainable soil use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!