Eucommia ulmoides (EU) and its diverse extracts have demonstrated antioxidative, anti-inflammatory, and cytoprotective properties against hepatic ischemia-reperfusion injury (HIRI). However, the primary constituents of EU and their putative mechanisms remain elusive. This study aims to explore the potential mechanisms of EU in the prevention and treatment of HIRI by employing network pharmacology and molecular docking methodologies. The main components and corresponding protein targets of EU were searched in the literature and TCMSP, and the compound target network was constructed by Cytoscape 3.9.1. Liver ischemia-reperfusion injury targets were searched in OMIM and GeneCards databases. The intersection points of compound targets and disease targets were obtained, and the overlapping targets were imported into the STRING database to construct the PPI network. We further analyzed the targets for GO and KEGG enrichment. Finally, molecular docking studies were performed on the core targets and active compounds. The component-target network unveiled a total of 26 efficacious bioactive compounds corresponding to 207 target proteins. Notably, the top-ranking compounds based on degree centrality were quercetin, β-sitosterol, and gallic acid. Within the PPI network, the highest degree centrality encompassed RELA, AKT1, TP53. GO and KEGG enrichment analysis elucidated that EU in HIRI primarily engaged in positive regulation of gene expression, positive transcriptional regulation via RNA polymerase II promoter, negative modulation of apoptotic processes, positive regulation of transcription from DNA templates, and drug responsiveness, among other biological processes. Key pathways included cancer pathways, RAGE signaling pathway, lipid metabolism, atherosclerosis, TNF signaling pathway, PI3K-Akt signaling pathway, and apoptotic pathways. Molecular docking analysis revealed robust affinities between quercetin, β-sitosterol, gallic acid, and RELA, AKT1, TP53, respectively. This study reveals EU exhibits substantial potential in mitigating and treating HIRI through multifaceted targeting and involvement in intricate signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673959 | PMC |
http://dx.doi.org/10.1038/s41598-023-47918-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!