The ability to perform sophisticated, high-throughput optogenetic experiments has been greatly enhanced by recent open-source illumination devices that allow independent programming of light patterns in single wells of microwell plates. However, there is currently a lack of instrumentation to monitor such experiments in real time, necessitating repeated transfers of the samples to stand-alone analytical instruments, thus limiting the types of experiments that could be performed. Here we address this gap with the development of the optoPlateReader (oPR), an open-source, solid-state, compact device that allows automated optogenetic stimulation and spectroscopy in each well of a 96-well plate. The oPR integrates an optoPlate illumination module with a module called the optoReader, an array of 96 photodiodes and LEDs that allows 96 parallel light measurements. The oPR was optimized for stimulation with blue light and for measurements of optical density and fluorescence. After calibration of all device components, we used the oPR to measure growth and to induce and measure fluorescent protein expression in E. coli. We further demonstrated how the optical read/write capabilities of the oPR permit computer-in-the-loop feedback control, where the current state of the sample can be used to adjust the optical stimulation parameters of the sample according to pre-defined feedback algorithms. The oPR will thus help realize an untapped potential for optogenetic experiments by enabling automated reading, writing, and feedback in microwell plates through open-source hardware that is accessible, customizable, and inexpensive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673842PMC
http://dx.doi.org/10.1038/s42003-023-05532-4DOI Listing

Publication Analysis

Top Keywords

microwell plates
12
optogenetic stimulation
8
stimulation spectroscopy
8
optogenetic experiments
8
light measurements
8
opr
6
high-throughput feedback-enabled
4
optogenetic
4
feedback-enabled optogenetic
4
stimulation
4

Similar Publications

Background: With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources.

View Article and Find Full Text PDF

Validation of Therapeutic Agent Conjugation to Polyvinyl Alcohol-Coated Medical Devices.

J Vis Exp

November 2024

Department of Molecular and Cellular Physiology, LSU Health Shreveport.

Article Synopsis
  • Protein-based therapeutics face challenges with delivery and site-specific action, but our approach involves covalently attaching these proteins to medical devices for targeted delivery.
  • We studied the binding of glucagon-like peptide-2 (GLP-2) to vaginal and intestinal expansion sleeves, using chemically reactive surfaces to enable effective binding of this therapeutic agent.
  • Our results showed that about 44% of the applied GLP-2 could be immobilized on the devices, allowing for lower doses to achieve similar therapeutic effects compared to traditional systemic administration, while minimizing side effects.
View Article and Find Full Text PDF

Rapid determination of chemical losses in a microplate bioassay using fluorescence spectroscopy.

Anal Methods

December 2024

School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, Corvallis, OR, 97331, USA.

The increase in production and innovation of chemicals that humans interface with has enhanced the need for rapid toxicity testing of new and existing chemicals. This need, along with efforts to reduce animal testing, has led to the development of high-throughput bioassays typically conducted in microplates. These bioassays offer time and resource advantages over traditional animal models; however, significant chemical losses can occur in microplates.

View Article and Find Full Text PDF

Microfluidic-based fluorescence enhancement of silica-embedded carbon dots for direct detection and quantification of unamplified HCV RNA in clinical samples.

Anal Chim Acta

January 2025

Center of Genomics, Helmy Institute, Zewail City of Science and Technology, Sheikh Zayed Dist, 12588, Giza, Egypt; Pathology and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University. Cairo, 11591, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, 12566, Giza, Egypt. Electronic address:

Article Synopsis
  • Hepatitis C Virus (HCV) is a serious, chronic infection that often shows no symptoms, making early detection crucial for treatment and infection control.
  • Current detection methods like PCR are expensive and time-consuming, which limits their use in smaller labs and field settings.
  • A new technology using crosslinked Enhanced Emission (CEE) has been developed for detecting HCV RNA with high sensitivity and speed, allowing results in under 20 minutes via a 3D-printed microfluidic chip, achieving impressive sensitivity (96.47%) and specificity (98.79%).
View Article and Find Full Text PDF

Liquid marbles (LMs) are microliter-scale droplets coated with hydrophobic solid particles. The particle size and hydrophobicity of the surface coating determine their properties, such as transparency, expandability, and resistance to evaporation and coalescence, one or more of which can be critical to their application as microreactors. This study reports the use of a mixture of two different hydrophobic powders for fabrication of LMs for colorimetric assays: trichloro(1,1,2,2-perfluorooctyl) silane-linked silica gel (modified silica gel (MSG), particle size: 40-75 μm) and hexamethyldisilazane-linked fumed silica (modified fumed silica (MFS), average aggregate length: 200-300 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!