Fuel cells are a promising renewable energy technology that depend heavily on noble metal Pt-based catalysts, particularly for the oxygen reduction reaction (ORR). The discovery of new, efficient non-precious metal ORR catalysts is critical for the continued development of cost-effective, high-performance fuel cells. The synthesized carbon material showed excellent electrocatalytic activity for the ORR, with half-wave potential (E) and limiting current density (JL) of 0.88 V and 5.10 mA·cm in alkaline electrolyte, respectively. The material has a Tafel slope of (65 mV dec), which is close to commercial Pt/C catalysts (60 mV dec). Moreover, the prepared materials exhibited excellent performance when assembled as cathodes for zinc-air batteries. The power density reached 110.02 mW cm and the theoretical specific capacity was 801.21 mAh g, which was higher than that of the Pt/C catalyst (751.19 mAh g). In this study, with the assistance of Mg(CO)(OH)·4HO, we introduce an innovative approach to synthesize advanced carbon materials, achieving precise control over the material's structure and properties. This research bridges a crucial gap in material science, with potential applications in renewable energy technologies, particularly in enhancing catalysts for fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128317 | DOI Listing |
ScientificWorldJournal
January 2025
Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Bioethanol production is one of the key alternatives for fossil fuel use due to climate change. The study seeks to upscale tailor-made onsite enzyme blends for the bioconversion of cassava peels to bioethanol in simultaneous saccharification and fermentation (SSF) process using cassava peels-degrading fungi. The starch and cellulose contents of peels were determined.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India.
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action.
View Article and Find Full Text PDFGas leak detection is one of the most vital issues in the mining and energy industries. Despite many highly specific and sensitive laser-based spectroscopic systems available on the market, the universal optical gas leak detector is still unattainable. In this paper we demonstrate the laser gas sensing setup capable of indirect detection of virtually any gas leaks using differential optical dispersion spectroscopy of oxygen near 761 nm.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!