Ethyl cellulose/gelatin-carboxymethyl chitosan bilayer films doped with Euryale ferox seed shell polyphenol for cooked meat preservation.

Int J Biol Macromol

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China. Electronic address:

Published: January 2024

This study evaluated the effects of an edible bilayer containing polyphenols from the Euryale ferox seed shell on ready-to-eat cooked beef products, including the physical, mechanical, antioxidant, and antibacterial capabilities. Here, the bilayer films were prepared by layer-by-layer solution pouring using hydrophobic ethyl cellulose (EC) as the outer layer, and hydrophilic gelatin/carboxymethyl chitosan (GC) as the inner layer. By adjusting the proportion of gelatin to carboxymethyl chitosan, the optical, mechanical, and barrier characteristics of bilayer films were markedly enhanced. Extracted polyphenol (EP) from shell of the Euryale ferox seed performed potent antibacterial property against Listeria monocytogenes (L. monocytogenes). The addition of EP to the inner layer of the optimized bilayer film further improved the mechanical and barrier properties of films, and as expected, the film exhibited antioxidant and antibacterial abilities. Additionally, cooked beef and cooked chicken preservation tests indicated that the active bilayer film showed good inhibition of L. monocytogenes and delayed lipid oxidation in ready-to-eat meat products, and significantly delayed the pH, moisture loss, color and texture changes. This study developed multifunctional bilayer active edible films, which has a great potential in the preservation ready-to-eat cooked meat products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128286DOI Listing

Publication Analysis

Top Keywords

bilayer films
12
euryale ferox
12
ferox seed
12
seed shell
8
cooked meat
8
ready-to-eat cooked
8
cooked beef
8
antioxidant antibacterial
8
inner layer
8
mechanical barrier
8

Similar Publications

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).

View Article and Find Full Text PDF

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

In this article, a series of novel conducting copolymers P(FuPy--EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy--EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!