Alzheimer's disease (AD) is characterized by degeneration of the central nervous system. Recently, many studies have emphasized the beneficial role of Gardenia jasminoides J. Ellis extract (GJ-4) in neuroprotection, which is considered a potential drug for treating AD. However, the mechanism underlying its neuroprotective effects is obscure. This research intended to analyze the effectiveness of GJ-4 to induce neuronal protective role on a rat model of neurotoxicity and probe the potential mechanism. An AD model was established by intraperitoneal injection of aluminum chloride (AlCl). Then, AlCl-induced rats were administered 25 mg/kg and 50 mg/kg of GJ-4 orally. This study indicated that GJ-4 (25 and 50 mg/kg) mitigated AD-like behaviors, as evidenced by enhanced ambulation frequency, rearing frequency, and time spent in the target quadrant and decreased grooming frequency, defecation frequency, and escape latency in AlCl-challenged rats. Also, GJ-4 at 25 and 50 mg/kg exerted an anti-apoptosis effect in the hippocampus of AlCl-treated rats. Furthermore, GJ-4 (25 and 50 mg/kg) exhibited an anti-inflammatory effect in the hippocampus by repressing the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, further inhibiting the activation of Caspase 1, ASC, IL-1β, and IL-18 in AD hippocampus. Altogether, GJ-4 mitigated AlCl-triggered impairment of learning and memory in AD rats via repressing NLRP3 inflammasome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2023.148687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!