Vision includes looking and seeing. Looking, mainly via gaze shifts, selects a fraction of visual input information for passage through the brain's information bottleneck. The selected input is placed within the attentional spotlight, typically in the central visual field. Seeing decodes, i.e., recognizes and discriminates, the selected inputs. Hence, peripheral vision should be mainly devoted to looking, in particular, deciding where to shift the gaze. Looking is often guided exogenously by a saliency map created by the primary visual cortex (V1), and can be effective with no seeing and limited awareness. In seeing, peripheral vision not only suffers from poor spatial resolution, but is also subject to crowding and is more vulnerable to illusions by misleading, ambiguous, and impoverished visual inputs. Central vision, mainly for seeing, enjoys the top-down feedback that aids seeing in light of the bottleneck which is hypothesized to starts from V1 to higher areas. This feedback queries for additional information from lower visual cortical areas such as V1 for ongoing recognition. Peripheral vision is deficient in this feedback according to the Central-peripheral Dichotomy (CPD) theory. The saccades engendered by peripheral vision allows looking to combine with seeing to give human observers the impression of seeing the whole scene clearly despite inattentional blindness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2023.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!