The unexpected chiral order observed in 1T-TiSe_{2} represents an exciting area to explore chirality in condensed matter, while its microscopic mechanism remains elusive. Here, we have identified three metastable collective modes-the so-called single-q modes-in single layer TiSe_{2}, which originate from the unstable phonon eigenvectors at the zone boundary and break the threefold rotational symmetry. We show that polarized laser pulse is a unique and efficient tool to reconstruct the transient potential energy surface, so as to drive phase transitions between these states. By designing sequent layers with chiral stacking order, we propose a practical means to realize chiral charge density waves in 1T-TiSe_{2}. Further, the constructed chiral structure is predicted to exhibit circular dichroism as observed in recent experiments. These facts strongly indicate the chirality transfer from photons to the electron subsystem, meanwhile being strongly coupled to the lattice degree of freedom. Our work provides new insights into understanding and modulating chirality in quantum materials that we hope will spark further experimental investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.196401DOI Listing

Publication Analysis

Top Keywords

charge density
8
unraveling hidden
4
hidden charge
4
density wave
4
wave phases
4
phases 1t-tise_{2}
4
1t-tise_{2} unexpected
4
chiral
4
unexpected chiral
4
chiral order
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!