Bounding box regression (BBR) is one of the core tasks in object detection, and the BBR loss function significantly impacts its performance. However, we have observed that existing IoU-based loss functions suffer from unreasonable penalty factors, leading to anchor boxes expanding during regression and significantly slowing down convergence. To address this issue, we intensively analyzed the reasons for anchor box enlargement. In response, we propose a Powerful-IoU (PIoU) loss function, which combines a target size-adaptive penalty factor and a gradient-adjusting function based on anchor box quality. The PIoU loss guides anchor boxes to regress along efficient paths, resulting in faster convergence than existing IoU-based losses. Additionally, we investigate the focusing mechanism and introduce a non-monotonic attention layer that was combined with PIoU to obtain a new loss function PIoU v2. PIoU v2 loss enhances the capability to focus on anchor boxes of medium quality. By incorporating PIoU v2 into popular object detectors such as YOLOv8 and DINO, we achieved an increase in average precision (AP) and improved performance compared to their original loss functions on the MS COCO and PASCAL VOC datasets, thus validating the effectiveness of our proposed improvement strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.11.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!