Introduction: When time since stroke onset is unknown, DWI-FLAIR mismatch rating is an established technique for patient stratification. A visible DWI lesion without corresponding parenchymal hyperintensity on FLAIR suggests time since onset of under 4.5 h and thus a potential benefit from intravenous thrombolysis. To improve accuracy and availability of the mismatch concept, deep learning might be able to augment human rating and support decision-making in these cases.

Methods: We used unprocessed DWI and coregistered FLAIR imaging data to train a deep learning model to predict dichotomized time since ischemic stroke onset. We analyzed the performance of Group Convolutional Neural Networks compared to other deep learning methods. Unlabeled imaging data was used for pre-training. Prediction performance of the best deep learning model was compared to the performance of four independent junior and senior raters. Additionally, in cases deemed indeterminable by human raters, model ratings were used to augment human performance. Post-hoc gradient-based explanations were analyzed to gain insights into model predictions.

Results: Our best predictive model performed comparably to human raters. Using model ratings in cases deemed indeterminable by human raters improved rating accuracy and interrater agreement for junior and senior ratings. Post-hoc explainability analyses showed that the model localized stroke lesions to derive predictions.

Discussion: Our analysis shows that deep learning based clinical decision support has the potential to improve the accessibility of the DWI-FLAIR mismatch concept by supporting patient stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709350PMC
http://dx.doi.org/10.1016/j.nicl.2023.103544DOI Listing

Publication Analysis

Top Keywords

deep learning
24
stroke onset
12
dwi-flair mismatch
12
human raters
12
patient stratification
8
mismatch concept
8
augment human
8
imaging data
8
learning model
8
junior senior
8

Similar Publications

Background: Medical images play an important role in diagnosis and treatment of pediatric solid tumors. The field of radiology, pathology, and other image-based diagnostics are getting increasingly important and advanced. This indicates a need for advanced image processing technology such as Deep Learning (DL).

View Article and Find Full Text PDF

Design and validation of the reflection skills self-assessment questionnaire (RSSAQ).

J Educ Health Promot

November 2024

Medical Education Research Center, Medical Education Department, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.

Background: Reflection is one of the main components of the medical sciences curriculum. It is one of the learner-centered educational strategies, leading to deep learning, and is necessary to attain professional capabilities. A pertinent challenge is how to assess reflection.

View Article and Find Full Text PDF

Introduction: Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We aimed to develop a deep-learning algorithm using OCT to detect AD and MCI.

Methods: We performed a cross-sectional study involving 228 Asian participants (173 cases/55 controls) for model development and testing on 68 Asian (52 cases/16 controls) and 85 White (39 cases/46 controls) participants.

View Article and Find Full Text PDF

Objective: Lower limb malalignment can complicate symptoms and accelerate knee osteoarthritis (OA), necessitating consideration in study population selection. In this study, we develop and validate a deep learning model that classifies leg alignment as "normal" or "malaligned" from knee antero-posterior (AP)/postero-anterior (PA) radiographs alone, using an adjustable hip-knee-ankle (HKA) angle threshold.

Material And Methods: We utilized 8878 digital radiographs, including 6181 AP/PA full-leg x-rays (LLRs) and 2697 AP/PA knee x-rays (2292 with positioning frame, 405 without).

View Article and Find Full Text PDF

Contemporary research in 3D object detection for autonomous driving primarily focuses on identifying standard entities like vehicles and pedestrians. However, the need for large, precisely labelled datasets limits the detection of specialized and less common objects, such as Emergency Medical Service (EMS) and law enforcement vehicles. To address this, we leveraged the Car Learning to Act (CARLA) simulator to generate and fairly distribute rare EMS vehicles, automatically labelling these objects in 3D point cloud data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!