Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67‑leads) were obtained in nine normal cases. Subject specific MRI-based anatomical heart/torso-models with electrode positions were created. The boundary element method was used to account for the volume conductor effects. To simulate the measured T-waves, the EDL was used to apply different ventricular repolarization gradients: a) transmural, b) interventricular c) apico-basal and d) all three gradients (a-c) combined. The combined gradient (d) was optimized using an inverse procedure (Levenberg-Marquardt). Correspondence between simulated and measured T-waves was assessed using correlation coefficient (CC) and relative difference (RD). Results Realistic T-waves were simulated if repolarization times of: (a) the epicardium were smaller than the endocardium; (b) the left ventricle were smaller than the right ventricle and (c) the apex increased towards the base. The apico-basal gradient resulted in the highest correspondence between measured and simulated T-waves (CC = 0.84(0.81-0.91);RD = 0.68(0.60-0.71)) compared to a transmural gradient (CC = 0.77(0.71-0.80);RD = 1.46(0.82-1.75)) and an interventricular gradient (CC = 0.71(0.67-0.80);RD = 0.85(0.75-0.87)). All three gradients combined further improved the correspondence between measured and simulated T-waves (CC = 0.83(0.82-0.89);RD = 0.60(0.51-0.63)), especially after optimization (CC = 0.96(0.94-0.98);RD = 0.27(0.22-0.34)). Conclusion The application of all repolarization gradients combined resulted in the largest agreement between simulated and measured T-waves, followed by the apico-basal repolarization gradient. With these findings, we will optimize our EDL-based inverse procedure to assess repolarization abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2023.11.003 | DOI Listing |
Heart Rhythm
January 2025
Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:
Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.
Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.
J Am Heart Assoc
January 2025
Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA.
Background: Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity.
Methods And Results: Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031.
Heart Rhythm
December 2024
Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia. Electronic address:
Background: Hydroquinidine reduces arrhythmic events in patients with Brugada syndrome (BrS). The mechanism by which it exerts antiarrhythmic benefit and its electrophysiological effects on BrS substrate remain incompletely understood.
Objective: This study aimed to determine the effect of hydroquinidine on ventricular depolarization and repolarization in patients with BrS in vivo.
Circ Arrhythm Electrophysiol
December 2024
Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart (L.P., D.G.D.R., P.V., A. Sorgente, A.D.M., G.V., M.C.F., G.T., I.E., P.-A.C., I.O., G.B., A.A., E.S., G.P., J.S., A.G., P.B., G.B.C., A. Sarkozy, C.d.A.), Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Belgium.
J Cardiovasc Electrophysiol
December 2024
Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!