Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using . Previous experiments have demonstrated that sodium bisulfate (NaHSO) can significantly decrease AC production by GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO and will deepen the understanding of the complex regulatory mechanisms of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725169 | PMC |
http://dx.doi.org/10.33073/pjm-2023-036 | DOI Listing |
Microb Cell Fact
January 2025
Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain.
Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Botany and Microbiology Department, Faculty of Science, King Saud University.
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Dentistry, All India Institute of Medical Sciences Mangalagiri, Mangalagiri, Andhra Pradesh, India
Methicillin-resistant (MRSA) osteomyelitis of the maxilla is a rare condition in paediatric patients, with limited evidence available for optimal treatment protocols. We present the case of a paediatric patient in the early childhood age group with post-traumatic maxillary osteomyelitis caused by MRSA. The child developed facial swelling following trauma, and imaging revealed maxillary sinus wall thickening and bone erosions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!