LINC00921 reduces lung cancer radiosensitivity by destabilizing NUDT21 and driving aberrant MED23 alternative polyadenylation.

Cell Rep

Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Shandong University Cancer Center, Jinan, Shandong, China. Electronic address:

Published: December 2023

Alternative polyadenylation (APA) plays a major role in controlling transcriptome diversity and therapeutic resistance of cancers. However, long non-coding RNAs (lncRNAs) involved in pathological APA remain poorly defined. Here, we functionally characterize LINC00921, a MED13L/P300-induced oncogenic lncRNA, and show that it is required for global regulation of APA in non-small cell lung cancer (NSCLC). LINC00921 shows significant potential for reducing NSCLC radiosensitivity, and high LINC00921 levels are associated with a poor prognosis for patients with NSCLC treated with radiotherapy. LINC00921 controls NUDT21 stability by facilitating binding of NUDT21 with the E3 ligase TRIP12. LINC00921-induced destabilization of NUDT21 promotes 3' UTR shortening of MED23 mRNA via APA, which, in turn, leads to elevated MED23 protein levels in cancer cells and nuclear translocation of β-catenin and thereby activates expression of multiple β-catenin/T cell factor (TCF)/lymphoid enhancer-binding factor (LEF)-regulated core oncogenes (c-Myc, CCND1, and BMP4). These findings highlight the importance of functionally annotating lncRNAs controlling APA and suggest the clinical potential of therapeutics for advanced NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.113479DOI Listing

Publication Analysis

Top Keywords

lung cancer
8
alternative polyadenylation
8
linc00921
5
apa
5
linc00921 reduces
4
reduces lung
4
cancer radiosensitivity
4
radiosensitivity destabilizing
4
nudt21
4
destabilizing nudt21
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!