A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient Hybrid Training Method for Neuromorphic Hardware Using Analog Nonvolatile Memory. | LitMetric

AI Article Synopsis

  • * The authors propose a new hybrid training method that does not rely on expensive conductance tuning protocols, allowing for more efficient training of neuromorphic hardware.
  • * This novel method demonstrates impressive results, achieving accuracy levels in hardware-based neural networks similar to those of software-based networks after just one training epoch, indicating a significant advancement for low-power artificial intelligence applications.

Article Abstract

Neuromorphic hardware using nonvolatile analog synaptic devices provides promising advantages of reducing energy and time consumption for performing large-scale vector-matrix multiplication (VMM) operations. However, the reported training methods for neuromorphic hardware have appreciably shown reduced accuracy due to the nonideal nature of analog devices, and use conductance tuning protocols that require substantial cost for training. Here, we propose a novel hybrid training method that efficiently trains the neuromorphic hardware using nonvolatile analog memory cells, and experimentally demonstrate the high performance of the method using the fabricated hardware. Our training method does not rely on the conductance tuning protocol to reflect weight updates to analog synaptic devices, which significantly reduces online training costs. When the proposed method is applied, the accuracy of the hardware-based neural network approaches to that of the software-based neural network after only one-epoch training, even if the fabricated synaptic array is trained for only the first synaptic layer. Also, the proposed hybrid training method can be efficiently applied to low-power neuromorphic hardware, including various types of synaptic devices whose weight update characteristics are extremely nonlinear. This successful demonstration of the proposed method in the fabricated hardware shows that neuromorphic hardware using nonvolatile analog memory cells becomes a more promising platform for future artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3327906DOI Listing

Publication Analysis

Top Keywords

neuromorphic hardware
24
training method
16
hybrid training
12
hardware nonvolatile
12
nonvolatile analog
12
synaptic devices
12
training
8
hardware
8
analog synaptic
8
conductance tuning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!