AI Article Synopsis

  • This study investigated how three types of biomonitors—Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss—sorb mercury (Hg) in controlled indoor conditions of a historically Hg-polluted herbarium.
  • The biomonitors were exposed for either 2 or 12 months and were monitored every 3 weeks for Hg content, gaseous elemental mercury (GEM) levels, temperature, humidity, and particulate matter.
  • Results showed that barks were most sensitive to gaseous Hg pollution, while lichen and moss also reacted to varying climatic conditions, with all biomonitors displaying higher mercury accumulation in the initial weeks of exposure.

Article Abstract

Biomonitoring studies are often employed to track airborne pollutants both in outdoor and indoor environments. In this study, the mercury (Hg) sorption by three biomonitors, i.e., Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss, was investigated in controlled (indoor) conditions. In comparison to outdoor environments, controlled conditions offer the opportunity to investigate more in detail the variables (humidity, temperature, pollutants speciation, etc.) that control Hg uptake. The biomonitors were exposed in two distinct periods of the year for 2 and 12 months respectively, in the halls of the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), which are polluted by Hg, due to past plant sample treatments. The Hg sorption trend was monitored every 3 weeks by recording: (i) the Hg content in the substrata, (ii) gaseous elemental mercury (GEM) concentrations in the exposition halls, (iii) temperature, (iv) humidity, and (v) particulate matter (PM) concentrations. At the end of the experiment, Hg concentrations in the biomonitors range from 1130 ± 201 to 293 ± 45 μg kg (max-min) in barks, from 3470 ± 571 to 648 ± 40 μg kg in lichens, and from 3052 ± 483 to 750 ± 127 μg kg in mosses. All the biomonitors showed the highest Hg accumulation after the first 3 weeks of exposure. Mercury concentrations increased over time showing a continuous accumulation during the experiments. The biomonitors demonstrated different Hg accumulation trends in response to GEM concentrations and to the different climatic conditions (temperature and humidity) of the Herbarium halls. Barks strictly reflected the gaseous Hg pollution, while lichen and moss accumulation was also influenced by the climatic conditions of the indoor environment. Mercury bound to PM seemed to provide a negligible contribution to the biomonitors final uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746580PMC
http://dx.doi.org/10.1007/s11356-023-31105-3DOI Listing

Publication Analysis

Top Keywords

indoor environments
8
central italian
8
italian herbarium
8
florence italy
8
gem concentrations
8
temperature humidity
8
climatic conditions
8
biomonitors
7
mercury
5
concentrations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!