Background: The causal relationship and the direction of the effect between depression and aging remain controversial.
Methods: We used a bidirectional two-sample Mendelian randomization analysis to examine the relationship between depression and age proxy indicators. We obtained pooled statistics from genome-wide association studies (GWAS) on depression and the age proxy indicators. We employed five MR analysis methods to address potential biases and ensure robustness of our results, with the inverse variance weighted (IVW) method being the primary outcome. We also conducted outlier exclusion using Radial MR, MRPRESSO, and MR Steiger filters. Additionally, sensitivity analyses were performed to assess heterogeneity and pleiotropy.
Results: Our MR analysis revealed that depression causally leads to shortened telomere length (β = - 0.014; P = 0.038), increased frailty index (β = 0.076; P = 0.000), and accelerated GrimAge (β = 0.249; P = 0.024). Furthermore, our findings showed that the frailty index (OR = 1.679; P = 0.001) was causally associated with an increased risk of depression. Additionally, we found that appendicular lean mass (OR = 0.929; P = 0.000) and left-hand grip strength (OR = 0.836; P = 0.014) were causally associated with a reduced risk of depression. Sensitivity analyses demonstrated the robustness of our findings.
Conclusions: Our study provides evidence that depression contributes to the accelerated aging process, resulting in decreased telomere length, increased frailty index, and accelerated GrimAge. Additionally, we found that the frailty index increases the risk of depression, while appendicular lean mass and left-handed grip strength reduce the risk of depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40520-023-02596-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!