A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Uptake of Rare Trace Elements by Perennial Ryegrass ( L.). | LitMetric

The Uptake of Rare Trace Elements by Perennial Ryegrass ( L.).

Toxics

School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.

Published: November 2023

Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil-plant system. We aimed to determine the capacity of (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil-plant system. Soil was spiked with 2.5-283 mg kg of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg, respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg, respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg, respectively. Bioaccumulation coefficients ranged from 0.0030-0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via , as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674648PMC
http://dx.doi.org/10.3390/toxics11110929DOI Listing

Publication Analysis

Top Keywords

rare trace
8
trace elements
8
soil-plant system
8
soil concentrations
8
foliar concentrations
8
≅ ≅
8
food chain
8
soil
6
concentrations
5
uptake rare
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!