A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pulmonary Toxicity Assessment after a Single Intratracheal Inhalation of Chlorhexidine Aerosol in Mice. | LitMetric

Guanidine disinfectants are important chemical agents with a broad spectrum of activity that are effective against most microorganisms. Chlorhexidine, one of the most used guanidine disinfectants, is added to shampoo and mouthwash and applied in medical device sterilization. During the use of chlorhexidine, aerosols with micron particle size may be formed, which may cause inhalation toxicity. To assess the toxicity of inhaled chlorhexidine aerosol, mice underwent the intratracheal instillation of different concentrations of chlorhexidine (0, 0.125%, 0.25%, 0.5%, and 1%) using a MicroSprayer Aerosolizer. The mice were exposed for eight weeks and then sacrificed to obtain lung tissue for subsequent experiments. Histopathology staining revealed damaged lung tissues and increased collagen exudation. At the same time, pulmonary function tests showed that chlorhexidine exposure could cause restrictive ventilatory dysfunction, consistent with pulmonary fibrosis. The results of transcriptome analyses suggest that chlorhexidine may trigger an inflammatory response and promote the activation of pathways related to extracellular matrix deposition. Further, we identified that chlorhexidine exposure might enhance mucus secretion by up-regulating and genes, thereby inducing fibrosis-like injury. These findings underscore the need for standardized use of disinfectants and the assessment of their inhalation toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675078PMC
http://dx.doi.org/10.3390/toxics11110910DOI Listing

Publication Analysis

Top Keywords

chlorhexidine
8
chlorhexidine aerosol
8
aerosol mice
8
guanidine disinfectants
8
inhalation toxicity
8
chlorhexidine exposure
8
pulmonary toxicity
4
toxicity assessment
4
assessment single
4
single intratracheal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!