Natural products are a very rich source for obtaining new compounds with therapeutic potential. In the search for new antiparasitic and antimicrobial agents, molecular hybrids were designed based on the structures of antimicrobial marine quinazolinones and eugenol, a natural phenolic compound. Following reports of the therapeutic potential of quinazolinones and eugenol derivatives, it was expected that the union of these pharmacophores could generate biologically relevant substances. The designed compounds were obtained by classical synthetic procedures and were characterized by routine spectrometric techniques. Nine intermediates and final products were then evaluated in vitro against and . Antifungal and antibacterial activity were also evaluated. Six compounds (, , , , , and ) showed mild activity against with IC in the range of 11.17-31.68 μM. Additionally, intermediate showed anti- activity (IC 7.54 μM) and was six times less cytotoxic against THP-1 cells. In conclusion, novel derivatives with a simple quinazolinone scaffold showing selectivity against parasites without antibacterial and antifungal activities were disclosed, paving the way for new antitrypanosomal agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671849 | PMC |
http://dx.doi.org/10.3390/md21110551 | DOI Listing |
Addict Sci Clin Pract
January 2025
Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA.
Background: Opioid-related fatal overdoses are occurring at historically high levels and increasing each year. Accessible social and financial support are imperative to the initiation and success of treatment for Opioid Use Disorder (OUD). Medications for Opioid Use Disorder (MOUD) offer effective treatment but there are many more people with untreated OUD than receiving evidence-based medication.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, P.O. Box 71, Ishaka - Bushenyi, Uganda.
Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!