Recently, there has been rapid development of electrochemical sensors, and there have been numerous reports in the literature that describe new constructions with improved performance parameters. Undoubtedly, this is due to the fact that those sensors are characterized by very good analytical parameters, and at the same time, they are cheap and easy to use, which distinguishes them from other analytical tools. One of the trends observed in their development is the search for new functional materials. This review focuses on potentiometric sensors designed with the use of various metal oxides. Metal oxides, because of their remarkable properties including high electrical capacity and mixed ion-electron conductivity, have found applications as both sensing layers (e.g., of screen-printing pH sensors) or solid-contact layers and paste components in solid-contact and paste-ion-selective electrodes. All the mentioned applications of metal oxides are described in the scope of the paper. This paper presents a survey on the use of metal oxides in the field of the potentiometry method as both single-component layers and as a component of hybrid materials. Metal oxides are allowed to obtain potentiometric sensors of all-solid-state construction characterized by remarkable analytical parameters. These new types of sensors exhibit properties that are competitive with those of the commonly used conventional electrodes. Different construction solutions and various metal oxides were compared in the scope of this review based on their analytical parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672869 | PMC |
http://dx.doi.org/10.3390/membranes13110876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!