High-Performance FAU Zeolite Membranes Derived from Nano-Seeds for Gas Separation.

Membranes (Basel)

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

Published: October 2023

In this study, high-performance FAU (NaY type) zeolite membranes were successfully synthesized using small-sized seeds of 50 nm, and their gas separation performance was systematically evaluated. Employing nano-sized NaY seeds and an ultra-dilute reaction solution with a molar composition of 80 NaO: 1AlO: 19 SiO: 5000HO, the effects of synthesis temperature, crystallization time, and porous support (α-AlO or mullite) on the formation of FAU membranes were investigated. The results illustrated that further extending the crystallization time or increasing the synthesis temperature led to the formation of a NaP impurity phase on the FAU membrane layer. The most promising FAU membrane with a thickness of 2.7 µm was synthesized on an α-AlO support at 368 K for 8 h and had good reproducibility. The H permeance of the membrane was as high as 5.34 × 10 mol/(m s Pa), and the H/CH and H/-CH selectivities were 183 and 315, respectively. The CH/CH selectivity of the membrane was as high as 46, with a remarkably high CH permeance of 1.35 × 10 mol/(m s Pa). The excellent separation performance of the membrane is mainly attributed to the thin, defect-free membrane layer and the relatively wide pore size (0.74 nm).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672818PMC
http://dx.doi.org/10.3390/membranes13110858DOI Listing

Publication Analysis

Top Keywords

high-performance fau
8
zeolite membranes
8
gas separation
8
separation performance
8
synthesis temperature
8
crystallization time
8
fau membrane
8
membrane layer
8
membrane high
8
membrane
6

Similar Publications

Kohn-Sham inversion for open-shell systems.

J Chem Phys

January 2025

Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.

Methods based on density-functional theory usually treat open-shell atoms and molecules within the spin-unrestricted Kohn-Sham (KS) formalism, which breaks symmetries in real and spin space. Symmetry breaking is possible because the KS Hamiltonian operator does not need to exhibit the full symmetry of the physical Hamiltonian operator, but only the symmetry of the spin density, which is generally lower. Symmetry breaking leads to spin contamination and prevents a proper classification of the KS wave function with respect to the symmetries of the physical electron system.

View Article and Find Full Text PDF

Mode of Metal Ligation Governs Inhibition of Carboxypeptidase A.

Int J Mol Sci

December 2024

Computer Chemistry Center, Department for Chemistry and Pharmacy, Friedrich-Alexander University Erlangen Nürnberg (FAU), Nägelsbachstraße 25, 91052 Erlangen, Germany.

Carboxypeptidase is a Zn-dependent protease that specifically recognises and hydrolyses peptides with a hydrophobic side chain at the C-terminal residue. According to hydrolysis mechanisms proposed in the literature, catalysis requires a water molecule to be close to the Zn ion so as to be activated as a nucleophile. Among small molecules that resemble the slowly hydrolysed Gly-Tyr peptide, which have been previously designed as inhibitors and characterised structurally, a variant with the terminal amino acid in a D-configuration has been the most effective.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model.

View Article and Find Full Text PDF

Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in () and (), and the corresponding enzymes were determined to share a sequence identity of 95%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!