In this study, high-performance FAU (NaY type) zeolite membranes were successfully synthesized using small-sized seeds of 50 nm, and their gas separation performance was systematically evaluated. Employing nano-sized NaY seeds and an ultra-dilute reaction solution with a molar composition of 80 NaO: 1AlO: 19 SiO: 5000HO, the effects of synthesis temperature, crystallization time, and porous support (α-AlO or mullite) on the formation of FAU membranes were investigated. The results illustrated that further extending the crystallization time or increasing the synthesis temperature led to the formation of a NaP impurity phase on the FAU membrane layer. The most promising FAU membrane with a thickness of 2.7 µm was synthesized on an α-AlO support at 368 K for 8 h and had good reproducibility. The H permeance of the membrane was as high as 5.34 × 10 mol/(m s Pa), and the H/CH and H/-CH selectivities were 183 and 315, respectively. The CH/CH selectivity of the membrane was as high as 46, with a remarkably high CH permeance of 1.35 × 10 mol/(m s Pa). The excellent separation performance of the membrane is mainly attributed to the thin, defect-free membrane layer and the relatively wide pore size (0.74 nm).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672818 | PMC |
http://dx.doi.org/10.3390/membranes13110858 | DOI Listing |
J Chem Phys
January 2025
Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
Methods based on density-functional theory usually treat open-shell atoms and molecules within the spin-unrestricted Kohn-Sham (KS) formalism, which breaks symmetries in real and spin space. Symmetry breaking is possible because the KS Hamiltonian operator does not need to exhibit the full symmetry of the physical Hamiltonian operator, but only the symmetry of the spin density, which is generally lower. Symmetry breaking leads to spin contamination and prevents a proper classification of the KS wave function with respect to the symmetries of the physical electron system.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Computer Chemistry Center, Department for Chemistry and Pharmacy, Friedrich-Alexander University Erlangen Nürnberg (FAU), Nägelsbachstraße 25, 91052 Erlangen, Germany.
Carboxypeptidase is a Zn-dependent protease that specifically recognises and hydrolyses peptides with a hydrophobic side chain at the C-terminal residue. According to hydrolysis mechanisms proposed in the literature, catalysis requires a water molecule to be close to the Zn ion so as to be activated as a nucleophile. Among small molecules that resemble the slowly hydrolysed Gly-Tyr peptide, which have been previously designed as inhibitors and characterised structurally, a variant with the terminal amino acid in a D-configuration has been the most effective.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
BMC Chem
December 2024
Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model.
View Article and Find Full Text PDFMolecules
December 2024
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstraße 5, 91058 Erlangen, Germany.
Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in () and (), and the corresponding enzymes were determined to share a sequence identity of 95%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!