Photoanisotropic materials, in particular azodyes and azopolymers, have attracted significant research interest in the last decades. This is due to their applications in polarization holography and 4G optics, enabling polarization-selective diffractive optical elements with unique properties, including circular polarization beam-splitters, polarization-selective bifocal lenses, and many others. Numerous methods have been applied to increase the photoinduced birefringence of these materials, and as a result, to obtain polarization holographic elements with a high diffraction efficiency. Recently, a new approach has emerged that has been extensively studied by many research groups, namely doping azobenzene-containing materials with nanoparticles with various compositions, sizes, and morphologies. The resulting nanocomposites have shown significant enhancement in their photoanisotropic response, including increased photoinduced birefringence, leading to a higher diffraction efficiency and a larger surface relief modulation in the case of polarization holographic recordings. This review aims to cover the most important achievements in this new but fast-growing field of research and to present an extensive comparative analysis of the result, reported by many research groups during the last two decades. Different hypotheses to explain the mechanism of photoanisotropy enhancement in these nanocomposites are also discussed. Finally, we present our vision for the future development of this scientific field and outline its potential applications in advanced photonics technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674406 | PMC |
http://dx.doi.org/10.3390/nano13222946 | DOI Listing |
Molecules
September 2024
Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Among a variety of diverse host molecules distinguished by specific characteristics, the cucurbit[n]uril (CB) family stands out, being widely known for the attractive properties of its representatives along with their increasingly expanding area of applications. The presented herewith density functional theory (DFT)-based study is inspired by some recent studies exploring CBs as a key component in multifunctional hydrogels with applications in materials science, thus considering CB-assisted supramolecular polymeric hydrogels (CB-SPHs), a new class of 3D cross-linked polymer materials. The research systematically investigates the inclusion process between the most applied representative of the cavitand family CB[7] and a series of laser dye molecules as guests, as well as the possible encapsulation of a model side chain from the photoanisotropic polymer PAZO and its sodium-containing salt.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2023
Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photoanisotropic materials, in particular azodyes and azopolymers, have attracted significant research interest in the last decades. This is due to their applications in polarization holography and 4G optics, enabling polarization-selective diffractive optical elements with unique properties, including circular polarization beam-splitters, polarization-selective bifocal lenses, and many others. Numerous methods have been applied to increase the photoinduced birefringence of these materials, and as a result, to obtain polarization holographic elements with a high diffraction efficiency.
View Article and Find Full Text PDFIn this paper, we present a method of pattern recognition based on obtaining the photoanisotropic copies of object images. Such copies are induced on the dynamic polarization-sensitive material when the amplitude image of the object formed by a spatial light modulator is transilluminated by linearly polarized light with a wavelength actinic for the used material. In this case, the distribution of the intensities over the amplitude image is converted into the distribution of photoanisotropy over the sample of a polarization-sensitive material.
View Article and Find Full Text PDFGeometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths.
View Article and Find Full Text PDFOpt Express
March 2010
Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Polarization gratings can be realized by polarization holographic recording in photoanisotropic materials. In this paper, we study two types of polarization gratings. One is recorded with two orthogonally circularly (OC) polarized beams and the other one with two orthogonally linearly (OL) polarized beams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!