Cognitive assessment plays a vital role in clinical care and research fields related to cognitive aging and cognitive health. Lately, researchers have worked towards providing resolutions to measure individual cognitive health; however, it is still difficult to use those resolutions from the real world, and therefore using deep neural networks to evaluate cognitive health is becoming a hot research topic. Deep learning and human activity recognition are two domains that have received attention for the past few years. The former is for its relevance in application fields like health monitoring or ambient assisted living, and the latter is due to their excellent performance and recent achievements in various fields of application, namely, speech and image recognition. This research develops a novel Symbiotic Organism Search with a Deep Convolutional Neural Network-based Human Activity Recognition (SOSDCNN-HAR) model for Cognitive Health Assessment. The goal of the SOSDCNN-HAR model is to recognize human activities in an end-to-end way. For the noise elimination process, the presented SOSDCNN-HAR model involves the Wiener filtering (WF) technique. In addition, the presented SOSDCNN-HAR model follows a RetinaNet-based feature extractor for automated extraction of features. Moreover, the SOS procedure is exploited as a hyperparameter optimizing tool to enhance recognition efficiency. Furthermore, a gated recurrent unit (GRU) prototype can be employed as a categorizer to allot proper class labels. The performance validation of the SOSDCNN-HAR prototype is examined using a set of benchmark datasets. A far-reaching experimental examination reported the betterment of the SOSDCNN-HAR prototype over current approaches with enhanced precision of 86.51% and 89.50% on Penn Action and NW-UCLA datasets, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669472 | PMC |
http://dx.doi.org/10.3390/biomimetics8070554 | DOI Listing |
Sci Rep
December 2024
Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
Preserving the ability to vividly recall emotionally rich experiences contributes to quality of life in older adulthood. While prior works suggest that moderate-intensity physical activity (MPA) may bolster memory, it is unclear whether this extends to emotionally salient memories consolidated during sleep. In the current study, older adults (mean age = 72.
View Article and Find Full Text PDFSci Rep
December 2024
Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.
Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan.
In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!