Plant diversity includes over 300,000 species, and leaf structure is one of the main targets of selection, being highly variable in shape and size. On the other hand, the optimization of antenna design has no unique solution to satisfy the current range of applications. We analyzed the foliar geometries of 100 plant species and applied them as a biomimetic design template for microstrip patch antenna systems. From this set, a subset of seven species were further analyzed, including species from tropical and temperate forests across the phylogeny of the Angiosperms. Foliar geometry per species was processed by image processing analyses, and the resultant geometries were used in simulations of the reflection coefficients and the radiation patterns via finite differences methods. A value below -10 dB is set for the reflection coefficient to determine the operation frequencies of all antenna elements. All species showed between 3 and 15 operational frequencies, and four species had operational frequencies that included the 2.4 and 5 GHz bands. The reflection coefficients and the radiation patterns in most of the designs were equal or superior to those of conventional antennas, with several species showing multiband effects and omnidirectional radiation. We demonstrate that plant structures can be used as a biomimetic tool in designing microstrip antenna for a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669502 | PMC |
http://dx.doi.org/10.3390/biomimetics8070531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!