Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.e., monovalent or divalent salts. Specifically, we investigate the distribution of ions inside the gel structure and compare it with the bulk, i.e., away from the gel structure. In this first exploratory study, we neglect solvation effects in our gel by modeling the gels without an explicit solvent description, with the understanding that such an approach may be inadequate for describing ion partitioning in real polyelectrolyte gels. We see that this type of model is nonetheless a natural reference point for considering gels with solvation. Based on our idealized polymer network model without explicit solvent, we find that the ion partition coefficients scale with the salt concentration, and the ion partition coefficient for divalent ions is higher than for monovalent ions over a wide range of Bjerrum length (lB) values. For gels having both monovalent and divalent salts, we find that divalent ions exhibit higher ion partition coefficients than monovalent salt for low divalent salt concentrations and low lB. However, we also find evidence that the neglect of an explicit solvent, and thus solvation, provides an inadequate description when compared to experimental observations. Thus, in future work, we must consider both ion and polymer solvation to obtain a more realistic description of ion partitioning in polyelectrolyte gels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670699 | PMC |
http://dx.doi.org/10.3390/gels9110881 | DOI Listing |
Gels
December 2024
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy.
Polyelectrolyte hydrogels are smart materials whose swelling behavior is governed by ionizable groups on their polymeric chains, making them sensitive to pH and ionic strength. This study combined experiments and modeling to characterize anionic hydrogels. Mechanical tests and gravimetric analyses were performed to track hydrogel mass over time and at a steady state under varying pH and salt concentrations.
View Article and Find Full Text PDFGels
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China. Electronic address:
Eutectogels are popular as an emerging material in the field of flexible electronics. However, limited mechanical properties and ionic conductivity restrict their multifunctional application expansion. Herein, cationic chitosan quaternary ammonium salt (CQS) was evenly embedded into the three-dimensional porous framework of eutectogel to build ion migration channels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. Electronic address:
Potential safety hazards such as leakage, flammability and thermal runaway of liquid electrolytes in conventional energy storage devices have seriously hindered their further development. In this work, a flame-retardant polyacrylamide/pullulan/phytic acid (PAM/PUL/PA) hydrogel electrolyte is prepared by using PA as flame-retardant additive, PAM as main polymer chain by one-step radical polymerization method. The PAM/PUL/PA hydrogel shows good flame-retardant properties with limiting oxygen index of up to 58 %, high mechanical performance with stretch up to 1535 % and 92 kPa tensile stress.
View Article and Find Full Text PDFGels
November 2024
Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan.
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled drug delivery, indicates a wide range of possibilities for using this technology. This study focuses on developing controlled drug delivery systems using organogels as carriers for ceftriaxone and ofloxacin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!