Nanogels are candidate biomaterials for tissue engineering and drug delivery. In the present study, a cholesterol-hyaluronic acid hydrogel was developed, and the pro-inflammatory response of macrophages to the hydrogel was investigated to determine its use in biomedical applications. Hyaluronic acid modified with cholesterol (modification rate: 0-15%) and maleimide (Chol-HA) was synthesized. The Chol-HA nanogel was formed through self-assembly via hydrophobic cholesterol interactions in aqueous solution. The Chol-HA hydrogel was formed through chemical crosslinking of the Chol-HA nanogel via a Michael addition reaction between the maleimide and thiol groups of 4arm-PEGSH. We found that the Chol-HA hydrogels with 5, 10, and 15% cholesterol inhibited the pro-inflammatory response of HiBiT-THP-1 cells, suggesting that the cholesterol contributed to the macrophage response. Furthermore, Interleukin 4 (IL-4) encapsulated in the hydrogel of the Chol-HA nanogel enhanced the inhibition of the inflammatory response in HiBiT-THP-1 cells. These results provide useful insights into the biomedical applications of hydrogels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671248PMC
http://dx.doi.org/10.3390/gels9110866DOI Listing

Publication Analysis

Top Keywords

chol-ha nanogel
12
hyaluronic acid
8
pro-inflammatory response
8
biomedical applications
8
response hibit-thp-1
8
hibit-thp-1 cells
8
chol-ha
6
hydrogel
5
preparation cholesterol-modified
4
cholesterol-modified hyaluronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!