Extensive laboratory and field tests have shown that the gelation response of gellan gum to saline water makes it a promising candidate for enhanced oil recovery (EOR). The objective of this mini-review is to evaluate the applicability of gellan gum in EOR and compare its efficiency to other precursors, in particular, hydrolyzed polyacrylamide (HPAM). At first, the "sol-gel" phase transitions of gellan gum in aqueous-salt solutions containing mono- and divalent cations are considered. Then the rheological and mechanical properties of gellan in diluted aqueous solutions and gel state are outlined. The main attention is paid to laboratory core flooding and field pilot tests. The plugging behavior of gellan in laboratory conditions due to "sol-gel" phase transition is discussed in the context of conformance control and water shut-off. Due to its higher strength, gellan gum gel provided ~6 times greater resistance to the flow of brine in a 1 mm-width fracture compared to HPAM gel. The field trials carried out in the injection and production wells of the Kumkol oilfield, situated in Kazakhstan, demonstrated that over 6 and 11 months, there was an incremental oil recovery of 3790 and 5890 tons, respectively. To put it into perspective, using 1 kg of dry gellan resulted in the incremental production of 3.52 m (or 22 bbls) of oil. The treatment of the production well with 1 wt.% gellan solution resulted in a considerable decrease in the water cut up to 10-20% without affecting the oil flow rate. The advantages and disadvantages of gellan compared to HPAM are analyzed together with the economic feasibility of gellan over HPAM. The potential for establishing gellan production in Kazakhstan is emphasized. It is anticipated that gellan gum, manufactured through fermentation using glucose-fructose syrup from Zharkent and Burunday corn starch plants, could be expanded in the future for applications in both the food industry and oil recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671067 | PMC |
http://dx.doi.org/10.3390/gels9110858 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia. Electronic address:
Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India. Electronic address:
Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.
View Article and Find Full Text PDFInt J Pharm
December 2024
Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!