Monodispersed polyethylene glycol diacrylate (PEGDA)/acrylic acid (AA) microgels with a tuneable negative charge and macroporous internal structure have been produced using a Lego-inspired droplet microfluidic device. The surface charge of microgels was controlled by changing the content of AA in the monomer mixture from zero (for noncharged PEGDA beads) to 4 wt%. The macroporosity of the polymer matrix was introduced by adding 20 wt% of 600-MW polyethylene glycol (PEG) as a porogen material into the monomer mixture. The porogen was successfully leached out with acetone after UV-crosslinking, which resulted in micron-sized cylindrical pores with crater-like morphology, uniformly arranged on the microgel surface. Negatively charged PEGDA/AA beads showed improved adsorption capacity towards positively charged organic dyes (methylene blue and rhodamine B) compared to neutral PEGDA beads and high repulsion of negatively charged dye molecules (methyl orange and congo red). Macroporous microgels showed better adsorption properties than nonporous beads, with a maximum adsorption capacity towards methylene blue of 45 mg/g for macroporous PEGDA/AA microgels at pH 8.6, as compared to 23 mg/g for nonporous PEGDA/AA microgels at the same pH. More than 98% of Cu(II) ions were removed from 50 ppm solution at pH 6.7 using 2.7 mg/mL of macroporous PEGDA/AA microgel. The adsorption of cationic species was significantly improved when pH was increased from 3 to 9 due to a higher degree of ionization of AA monomeric units in the polymer network. The synthesized copolymer beads can be used in drug delivery to achieve improved loading capacity of positively charged therapeutic agents and in tissue engineering, where a negative charge of scaffolds coupled with porous structure can help to achieve improved permeability of high-molecular-weight metabolites and nutrients, and anti-fouling activity against negatively charged species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670463 | PMC |
http://dx.doi.org/10.3390/gels9110849 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Julius-Maximilians-Universitat Wurzburg, Institute for Pharmacy and Chemistry, Am Hubland, 97074, Würzbrug, GERMANY.
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" 15N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.
View Article and Find Full Text PDFCell Struct Funct
January 2025
Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University.
The motility of biological molecular motors has typically been analyzed by in vitro reconstitution systems using motors isolated and purified from organs or expressed in cultured cells. The behavior of biomolecular motors within cells has frequently been reported to be inconsistent with that observed in reconstituted systems in vitro. Although this discrepancy has been attributed to differences in ionic strength and intracellular crowding, understanding how such parameters affect the motility of motors remains challenging.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!