Managing organic agricultural wastes is a challenge in today's modern agriculture, where the production of different agricultural goods leads to the generation of large amounts of waste, for example, olive pomace and vine shoot in Mediterranean Europe. The discovery of a cost-effective and environment-friendly way to valorize such types of waste in Mediterranean Europe is encouraged by the European Union regulation. As an opportunity, organic agricultural waste could be used as culture media for solid-state fermentation (SSF) for fungal strains. This methodology represents a great opportunity to produce secondary metabolites like 6-pentyl-alpha-pyrone (6-PP), a lactone compound with antifungal properties against phytopathogens, produced by spp. Therefore, to reach adequate yields of 6-PP, lytic enzymes, and spores, optimization using specific agricultural cheap local wastes from Southeastern France is in order. The present study was designed to show the applicability of an experimental admixture design to find the optimal formulation that favors the production of 6-PP. To conclude, the optimized formulation of 6-PP production by under SSF contains 18% wheat bran, 23% potato flakes, 20% olive pomace, 14% olive oil, 24% oatmeal, and 40% vine shoots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672489 | PMC |
http://dx.doi.org/10.3390/jof9111123 | DOI Listing |
Food Chem
December 2024
Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand. Electronic address:
This study aimed to investigate the effects of solid-state fermentation (SSF) on the protein profile and digestibility of red seaweed (Pyropia spp.). The results indicated that compound lactic acid bacteria (LAB) performed better than a single strain in terms of growth and metabolism on the red seaweed substrate.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).
Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India.
The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.
View Article and Find Full Text PDFBioresour Technol
December 2024
Sanya Institute of Nanjing Agricultural University, Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
High production cost of cellulases limits its commercial application on lignocellulose. Solid-state fermentation (SSF) has special advantages of water and energy conservation, however, the lack of free water and water loss during fermentation limits its application. In this paper, a constructed water-supply SSF was used to improve carboxymethyl cellulose activity and filter paper activity of 1.
View Article and Find Full Text PDFBioresour Bioprocess
December 2024
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
Palm kernel meal (PKM) presents a challenge for non-ruminant livestock feeding due to its high fibre content predominantly in the form of mannan. Microbial fermentation offers a sustainable solution for fibre hydrolysis in lignocellulosic biomass. In this study, a Bacillus subtilis strain (F6), with high mannanase secretion capability, was isolated from the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!