Molecular Linkage between Immune System Disorders and Atherosclerosis.

Curr Issues Mol Biol

Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland.

Published: November 2023

A strong relationship exists between immune dysfunction and cardiovascular disease. Immune dysregulation can promote the development of cardiovascular diseases as well as exacerbate their course. The disorders may occur due to the presence of primary immune defects (currently known as inborn errors of immunity) and the more common secondary immune deficiencies. Secondary immune deficiencies can be caused by certain chronic conditions (such as diabetes, chronic kidney disease, obesity, autoimmune diseases, or cancer), nutritional deficiencies (including both lack of nutrients and bioactive non-nutrient compounds), and medical treatments and addictive substances. This article unravels the molecular linkage between the aforementioned immune system disorders and atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670175PMC
http://dx.doi.org/10.3390/cimb45110552DOI Listing

Publication Analysis

Top Keywords

molecular linkage
8
immune system
8
system disorders
8
disorders atherosclerosis
8
secondary immune
8
immune deficiencies
8
immune
7
linkage immune
4
atherosclerosis strong
4
strong relationship
4

Similar Publications

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.

View Article and Find Full Text PDF

Cherries are one of the economically important fruit crops in the Rosaceae family, genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE).

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!