Wild-type p53 cancer therapy-induced senescent cells frequently engulf and degrade neighboring ones inside a massive vacuole in their cytoplasm. After clearance of the internalized cell, the vacuole persists, seemingly empty, for several hours. Despite large vacuoles being associated with cell death, this process is known to confer a survival advantage to cancer engulfing cells, leading to therapy resistance and tumor relapse. Previous attempts to resolve the vacuolar structure and visualize their content using dyes were unsatisfying for lack of known targets and ineffective dye penetration and/or retention. Here, we overcame this problem by applying optical diffraction tomography and Raman spectroscopy to MCF7 doxorubicin-induced engulfing cells. We demonstrated a real ability of cell tomography and Raman to phenotype complex microstructures, such as cell-in-cells and vacuoles, and detect chemical species in extremely low concentrations within live cells in a completely label-free fashion. We show that vacuoles had a density indistinguishable to the medium, but were not empty, instead contained diluted cell-derived macromolecules, and we could discern vacuoles from medium and cells using their Raman fingerprint. Our approach is useful for the noninvasive investigation of senescent engulfing (and other peculiar) cells in unperturbed conditions, crucial for a better understanding of complex biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669708 | PMC |
http://dx.doi.org/10.3390/bios13110973 | DOI Listing |
Brief Bioinform
November 2024
Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Cryo-electron tomography (cryo-ET) is confronted with the intricate task of unveiling novel structures. General class discovery (GCD) seeks to identify new classes by learning a model that can pseudo-label unannotated (novel) instances solely using supervision from labeled (base) classes. While 2D GCD for image data has made strides, its 3D counterpart remains unexplored.
View Article and Find Full Text PDFTaiwan J Ophthalmol
December 2024
Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.
The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Dental Medicine Faculty, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania.
The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.
View Article and Find Full Text PDFMolecules
December 2024
Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!