We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of HO, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669336PMC
http://dx.doi.org/10.3390/bios13110965DOI Listing

Publication Analysis

Top Keywords

auns-pvp-galdh assay
12
galactose
8
gold nanostars
8
nadh galactose
8
turquoise blue
8
galactose nadh
8
assay
5
quantitative galactose
4
galactose colorimetric
4
colorimetric competitive
4

Similar Publications

We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!